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Functional delta-functions and Fourier transforms 
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Centre for Theoretical Physics, 34100 Trieste, Italy 

Received 26 October 1982, in final form 9 September 1983 

Abstract. A degenerate functional integral is defined. This integral yields some asymptotic 
relations for functional Fourier transforms, and might furnish a mathematical basis for 
introducing delta functions and their derivatives. Feynman-type integrals as well as 
measure-theoretic integrals are included in the discussion. 

1. Introduction 

The Fourier transform is a basic tool in the study of finite-dimensional distributions. 
This transform has also been used heuristically in various analogous infinite-dimensional 
situations. E.g., in the path-integral treatment of the electromagnetic field, one 
encounters formulae like 

9 ( A )  exp(i(A, dkAk)) = 6(dkAk). (1.1) I 

(-i)’ J” ga,(t)9a,(c) ei(*,c) ( P I ,  0. . .(P,7 Of(5) = D,, . . . D,,f(O). 

This equation serves to specify the gauge (cf e.g. Faddeev and Slavnov 1980). 
It would clearly be desirable to include such relations within the mathematical 

theory of Feynman path integrals (and of other functional integrals). The present note 
outlines a possible approach to this problem. In particular, we justify the formula 

(1.2) 

The functional integral will be defined in two ways, and will be related to asymptotic 
limits of more familiar integrals. 

A given real Hilbert space Xis  presupposed, in (1.2) and elsewhere. More precisely, 
we should take two such spaces X* and Xc with a specified isomorphism, but usually 
we will be ignoring this subtlety. The 9 symbols will have the usual translational 
invariance, 9,(x + a) = g j ( x )  (for a E X). The Do’s are differential operators, 

DBf(S):=(P, 6 / W f ( O : =  (d/d&),=of( t+ E P ) .  (1.3) 

(We will be concerned primarily with Giteaux derivatives like D,f.) An empty product, 
e.g. for j = O  in (1.2), is unity. 

The content of (1.2) for the case j = 0 can be expressed as follows: 

I %(l) exP(i(& t))  = a((), I 91(6)6(5)f(5) =f(o). (1.4a7 b )  
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(If j z  1, we would have derivatives of 6.) The 6 function occurs here naturally, but 
we do not consider here the question whether (1 .4a)  or (1.4b) could be exploited for 
a general and effective definition of S ( 5 ) .  We note, however, that the symbols 9, and 
6 can be determined by the above only up to a scale transformation, 9l + c9,, 

+ e-' 9,, 6 + c-'S, where c > 0. 
We mention also other studies of distributions in infinitely many variables, by 

Kristensen et a1 (1965, 1967) and KrCe (1976). In these studies no attempt was made 
to clarify formulae such as (1.2) or (1.4). 

2. Feynman-type integrals and their asymptotic limits 

Let f, be the Fourier transform of a bounded Bore1 measure p on X, 

f, (5) = d p  ( x )  el(X,E'. (2.1) I 
Definitions of Feynman-type integrals over 2 lead (ordinarily) to  the following evalu- 
ation (e.g. It6 1966, Tarski 1979): I g ( 5 )  e x p ( h ( 5 ,  5) ) fp (5 )  = +(x)  e x p [ h - ' ( x ,  x)I. I (2.2) 

The restrictions Im K 2 0, K f 0 are assumed here and below. If ~ K I  + cx: then the 
bounded convergence theorem yields f,(O) for the RHS.  (Indeed, taking this limit is 
equivalent to replacing exp[. . .] by exp[ - $A . . .] and letting A -+ 0.) The analysis of 
this section is, in essence, an elaboration of this fact. 

Equation (1.2) suggests that phase-space integrals should be relevant here, and for 
their definition we take that of I,,, as given in Tarski (1982). This article, moreover, 
discusses linear factors, such as in (1.2), and in this connection cf also Berg and Tarski 
(1981). Following the cited works, we make the hypothesis 

1 dIPI(X)(1+I(PI,X)I). . . (1+l(P,,x)l)<m, (2.3) 

and then (cf proposition 4 of Tarski (1982)), 

( - i l l  1 ~ I ( T ) w ~ )  el(',') eXp[+(iK)-l(l, 5)1(P1, i). . .(P,, l)f,(t) 

= dp(x){(P1, 6/64'?. . .(P,, S/65')(- 1)' e-'(x35)li =o  exp[i(i~c)-'(x, x)]. 
(2.4) 

(We used here an alternative notation for IP5(f , .  . .).) A heuristic passage to the limit 
I K /  + now yields (1.2), and we should like to give a precise description of the situation. 

We start by adapting the definition of the integral Ips to this limiting case. In 
particular, we use finitc-dimensional projections P, with P5 = U, Pl  = U, Fp = F(P. ,  Pa), 
and convergence factors (let dim P =  k ) :  

I ~ " b u , " 1 1 ( F ) = [ ( b b o + 1 ) / 2 ~ ] k  dku d k v e x p ( - i b ( u - P a ,  u - P a ) )  
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Then we take limits, first as P+ 1 by following a sequence belonging to a determining 
family, and then as b, bo+ 0 non-tangentially, requiring independence of a, a. in this 
latter limit, as in Tarski (1982). We arrive in this way at an integral which we denote 
by I;:, We will also write 

r 

The invariance properties of this integral follow immediately from the construction. 
We identify X with X., and with XL, as before. 

Proposition 1. Let a l ,  a 2 e  X, and let R be an orthogonal transformation on %. Let 
F be integrable for Ips. Then 

1; ( F )  = 1 91(t)92(5) exp(i(t+ a l ,  l+ a ~ ) ~ ( t +  a l ,  5 + a2) ( 2 . 7 ~ )  

= 91(5)92(5) e"5'c'F(Rt, R5). (2.7b) 

(The families of sequences of projections which yield convergence are as in proposition 
3 of Tarski (1982).) 

We restate the last sentence more fully. Both members of ( 2 . 7 ~ )  converge with 
reference to the same determining family (of sequences of projections), while for 
(2.7b) we have to transform this family by a rotation. Now, the following property 
of this integral is central for us. 

Proposition 2. Let p satisfy (2.3) and let f ,  be its Fourier transform. Then 
(PI ,  5). . .(P,, 5) f,(t) is integrable for I;, and (1.2) is fulfilled by this integral. Further- 
more, the two members of (2.4) approach those of (1.2) as I K ~  + CO. (The reference 
family of sequences of projections is the maximal one.) 

The following proof follows closely that of proposition 4 of Tarski (1982), as given 
in the appendix. 

Proof. We first note that the factors (Pk,  5) can be replaced by having ip1(Pk, a / & )  
act on e'(L3'), with cp + 0 at the end. (The assumed bound on p justifies the relevant 
interchanges of operations.) We next restrict ourselves to the exponential in (2. l ) ,  
with the integration to be considered later. Thus, let Fo = exp(i(x, t)+i((p, 5)). We 
can compute I ; , , (F , )  explicitly, and after letting P+ 1 we obtain 
I b , a , b  ,m 

0 o(Fo) =exp[-tb(a,  a)+i(ao, cp)-tbi'(cp, cp)I 

x exp[ - tB(  b, b d x  + +, x + +)I, 
B(b,  bo)= b,(bb,+I)-', 

( 2 . 8 ~ )  

(2.8b, c)  

(Here the scalar product is bilinear and symmetric, but not Hermitian.) 
Let us determine a bound for the last exponential. Note that B is FrCchet differenti- 

able at (0, O) ,  and that B(0,O) = d a ( 0 , O )  = 0, d,B(O, 0) = 1. Therefore we have for 
small b, bo (this restriction is to be assumed below as well) 

- ~ ( b ,  bo)(lbl+/bol)+Re b n s R e B ( b ,  bo),  (2.9) 
where E is some non-negative function which + 0 as b, bo+ 0. Moreover, in view of 

+ = ibolcp -iba + ao. 
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the non-tangentiality we may suppose clbol S Re bo for some c > 0. From these consider- 
ations we obtain a bound of the form 

texr$-+B(b, bo)(x7 x>II ~ex~(-4hlboII txl l~)  (2.10) 

for some h > 0. Moreover, the expression for B shows that exp[ - B(b, bo)(x, +)I has 
a bound of the form exp(hJbolllxllIls'll) for some vector $', and the existence of a 
uniform bound of I".. in (2.8) follows. 

The bound just deduced clearly applies also to Is- (Fo).  Thus one can interchange 
integration over ,y with P +  1 and with b, bo-,O. Moreover, when these limits are 
applied to Is... (Fo) ,  one obtains ei('p.x), and we recall the differential operators 
(&, 6/6p). So, after setting cp =0 ,  (1.2) follows. 

The second part, concerning I K J  + 00, follows by applying the bounded convergence 
theorem to (2.4), as after (1.2). 

Note that the second part is in effect a statement about interchangeability of limits: 

limlxl-ffi limb,,,,, limp+,. . . = limb,bo-o limp,l liml,l,ffi. . . . (2.11) 

We also remark that a slight generalisation of the foregoing proposition can be 
easily given, so as to allow linear factors (&, 5). . .(&, 6 )  in the integrand. Compare 
with proposition 4 of Tarski (1 982). 

3. Function spaces and measure-theoretic integrals 

In this section we give an alternative definition of the integral in (1.2). This definition 
will allow us to extend (1.2) to a larger class of functions f. 

We first define some classes of functions on 2. Let p be a Bore1 measure on Z, 
and let 

P ~ ( P ) : =  j dl~t(5)(1+11511)". (3.1) 

The condition p j ( p ) < a  is more restrictive than (2.3), but it is independent of the 
choice of vectors Bk. Let @") ={ f,: p , ( p )  <CO}. Thus proposition 2 applies a fortiori 

Let %'g) be the class of bounded and continuous functions on X, continuity referring 
to the strong topology, and let %c) be the class of functions having continuous and 
bounded (Giiteaux) derivatives of orders 1 c n. We also consider the 5 topology of 
Gross (1960, 1963), where the basic neighbourhoods of 5 are as follows: 

(3.2) 

Let ,-col be the class of bounded and uniformly 9-continuous functions on X These 
functions are integrable for the (properly extended) isotropic Gaussian measures. 
Further, let 9") be the class of functions having bounded and uniformly F-continuous 
derivatives of orders 1s 0. We have (cf Gross (1963), for the first inclusion) 

to f, E @ I ) .  

{ x  E X: IIA(x - 5) 11 < E for some Hilbert-Schmidt A } .  

c %p. (3.3) @ n )  G J ( ~ )  

It is also natural to set V =n, @"), etc, but such spaces will play no role here. 
We return to the integral in (1.2). We now adapt the definition by analytic 

continuation in Tarski (1982). We start with a measure-theoretic integral over an 
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(3.4) 

In view of the factor ei(63'), this integral is to be determined as an iterated integral. 
For the two alternative iterations, the successive variances are 6,' and (b  + b,' )-' in 
one case, and b-' and (bo + b-')-' in the other. 

Such integrals can be readily handled for functions in @"', also with linear factors, 
cf Tarski (1982). For more general functions in s'"', various unsolved problems arise. 
E.g. the first integration, say over 5, defines the transform 

This transform resembles that of Segal (1956), but unlike the latter, it is not unitary. 
It appears, indeed, that at present little can be said about f for general f~ Y("). It is 
also not clear if Segal's transform would be more helpful here. However, if F in (3.4) 
is such that F(6,  5) = F(6, PS) or = F( Pt,  5) for some finite-dimensional projection P, 
then we can first integrate over the cylindrical variable, and the difficulties associated 
with iteration disappear. We therefore confine our subsequent discussion to such F's. 
We also drop the condition made in Tarski (1982), that the two iterations yield the 
same result, and denote the integral so limited by J ' .  

Now, the absence of oscillatory Gaussian factors in (1.2) allows us to  bypass analytic 
continuation, and to take the limit directly of measure-theoretic integrals, as b, boLO. 
We therefore give lim(b, b,LO)J' for the second definition of the integral in (1.2), 
make the provision that the result be independent of a, aO€ R, and use the following 
notation: 

JL:(F)=lim(b, b,LO)J'(b, a ;  bo,a,,; F ) .  (3.6) 
Let us investigate the integral Jb?, with F=f(S)II{(P,, 5) and f~ 9''. As we 

specified above, the 5 integral should be done first. Our procedure now is essentially 
the same as it would be for the case of finite dimensionality. We replace each (&, 6 )  
by iC1(#Ik, 8/86) ,  we take these operators outside the 5 integral, and we evaluate the 
latter integral, obtaining 

J'(4 a; bo, a,; F )  

(3.7) 
Next we integrate by parts. For the integral at hand, this can be justified by factorising 
the Gaussian measure. E.g. for Dar we factorise with reference to  the decomposition 
X = [ p j ] + [ p j ] ' .  The result is 

~ = ( - i ) - '  91(~) [Da , .  . . Dpiexp(-$b(t-a, 5--a))f(t)]exp(. . .) 

%(t) e x d  - t( b + bo1)(&, t)] 
I 
= ( - i)-' exp( -tb(a,  a)) I 

(3.8) 
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We make the change of variable 5' = ( b +  b;1)1'25. The hypothesis allows us to take 
lim(b, bo\O) inside the integral and we want to take it also inside of f and exp, while 
in the latter places ( b  + b,')-''*[' + 0. The latter interchanges can be justified by 
verifying that the convergence in theorem 1 of Gross (1960) is in this case uniform 
in b, bo. However, we omit the details. There remains the normalised integral of 1, 
which equals 1. Therefore 

(3.9) Jby ( F )  = ( -  i)-'Dp, . . . Dp, f (0) .  

Moreover, translational invariance of Jb: is immediate, as before, and we summarise. 

Proposition 3. (a) The integral 3;: is translationally invariant, i.e. satisfies the analogue 
to (2.7a). (b) I f f €  T"), then the integral in (1.2) converges as JbT, and this equation 
is fulfilled. 

(We do not consider rotational invariance, in order to avoid discussing measure- 
theoretic subtleties.) 

We conclude with two remarks concerning technical details. First: the constructions 
of 1: and of Jb: are similar, but the difference between taking b and bo complex for 
1; and real for JbT is basic. Indeed, given e.g. f~ FcO), it would follow from Vitali's 
theorem that 1; ( f )  exists (and necessarily equals Jby ( f ) ) ,  provided the approximations 
with Re b, bo\O and P finite-dimensional are uniformly bounded. But the existence 
of such a bound in the general case remains unknown. Second: it is an open problem, 
if the integral in (1.2) can be defined, and the equation established, for general f E %g'. 
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